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Viscoelasticity of tightly entangled solutions of semiflexible polymers
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~Received 19 December 1997!

A molecular model is introduced to describe the linear viscoelasticity of tightly entangled solutions of
semiflexible polymers. An expression for the stress of a solution of wormlike chains is derived, and a tube
model is used to describe the effects of entanglement. Consideration of the Brownian dynamics of the polymer
within its tube yields a dynamic modulusG* (v)}( iv)3/4 at high frequencies, in agreement with the results of
recent microrheology experiments on actin solutions.@S1063-651X~98!52008-9#

PACS number~s!: 83.20.Di, 83.50.Gd, 87.45.Ft
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Current understanding of the viscoelasticity of polym
solutions is based to a large extent upon models that
designed to describe either completely flexible~Gaussian! or
completely rigid-rod polymers@1#. There exists, however,
large class of semiflexible polymers, which typically for
lyotropic liquid-crystalline phases at high enough concen
tions @2#, for which there exists no equally detailed molec
lar model of viscoelasticity. Among these are biopolyme
such as DNA,F-actin, and fibrin, as well as synthetic liquid
crystalline polymers such as Kevlar. For lack of a molecu
model of partially flexible chains, experiments on both is
tropic and nematic solutions of such polymers are often co
pared to models of rigid rods. The present paper provide
framework for the calculation of the various sources of el
tic stress in solutions of semi-flexible polymers genera
and, motivated in part by recent experiments on actin so
tions @3–7#, presents a model of linear viscoelasticity in t
tightly entangled regime@8–13# relevant to these experi
ments.

In what follows, we consider a solution ofc wormlike
chains per unit volume, each of contour lengthL, giving a
densityr[cL of contour length per unit volume and a me
size Lm[r21/2. The conformation of a single polymer i
specified by a continuous contourr (s), wheres is the con-
tour distance from one chain end, and by corresponding
gent and curvature vectorsu(s)[]r (s)/]s and w(s)
[]u(s)/]s. The chains are assumed to be inextensible
that uu(s)u51 and w(s)•u(s)50, and to have a bendin
energy

Ubend5
1
2 TLpE

0

L

dsuw~s!u2, ~1!

whereT is the temperature in units of energy andLp is the
persistence length.

We consider, more specifically, a ‘‘tightly-entangled’’ s
lution in which Lm!Lp , and in which each polymer is con
fined to a tube of diameterDe!Lp , as sketched in Fig. 1. In
this regime, there exists a tangential correlation lengthLe

}De
2/3Lp

1/3, of order the distance between collisions of t
polymer with the walls of the tube@8–10#, such that only
undulation modes of wavelength less thanLe can fluctuate
PRE 581063-651X/98/58~2!/1237~4!/$15.00
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freely. Simple scaling arguments@10# yield length scales
De}Lp(rLp

2)23/5 andLe}Lp(rLp
2)22/5.

To describe this regime we use the tube model, which
analogous to the Doi-Edwards~DE! model @1#, in which ~i!
each polymer is confined to a weakly-curved tube,~ii ! tan-
gential motion of the polymer relative to the tube is resis
only by viscous forces, and~iii ! the tube deforms affinely. To
describe low-frequency viscoelasticity, we introduce
coarse-grained~or ‘‘primitive’’ ! chain. Because only undu
lation modes of wavelengths greater thanLe are constrained
by entanglement, we may represent the coarse-grained c
as a chain ofN5L/Le discrete links andN11 beads, where
each link represents a subchain of lengthLe with a preferred
end-to-end lengtha that is slightly less thanLe . This coarse-
grained chain is assigned a bending energy

Ubend5
1
2 TLpa (

n51

N21

uw~n!u2, ~2!

wherew(n)5@u(n11)2u(n)#/a andu(n) is a unit vector
parallel to link n. We will describe a bending joint of the

FIG. 1. Tube model for an entangled wormlike chain.
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primitive chain as being ‘‘locally equilibrated’’ if the condi
tional average of the tensorw(n)w(n), averaged over chain
with a specified orientationu for the vector ū(n)[@u(n
11)1u(n)#/2, takes on the value

^w~n!w~n!d„ū~n!2u…&

^d„ū~n!2u…&
5

1

Lpa
~d2uu!, ~3!

obtained by applying the equipartition theorem to jointn of
Ubend, while constrainingw(n) to be perpendicular toū(n).

The links of this coarse-grained chain must also be ta
to be slightly extensible, since the end-to-end distanceq(n)
of a link may be changed slightly by changing the magnitu
of transverse undulations of the polymer, without chang
the true chain length. To describe this, we introduce a dim
sionless densityf(n)[Le /q(n) of contour length per unit
length of the primitive chain, with a thermal equilibrium
value of feq5Le /a. To calculate linear response, we m
assume a linear relationship

T ~n!.2B@f~n!2feq#/feq ~4!

between the tensionT(n) and contour length densityf(n) in
each link. The elastic modulusB has been calculated b
MacKintosh, Janmey, and Kas@11#, who obtained a value
B}TLp

2/Le
3 by considering the effect of an applied static te

sion upon the undulations of a confined polymer.
A general expression for the intramolecular polyme

contribution to the stress of a solution of discretized wor
like chains may be obtained@1# by evaluating the sums
5c(n51

N11^r (n)f(n)&, wherer (n) is the position of beadn of
a randomly chosen chain,f (n)5]@U1T ln(C)#/]r (n) is the
force on beadn, U($r%) is the intramolecular potential en
ergy, andC($r%) is a single-chain probability distribution
After a straightforward calculation@13#, and after taking the
wormlike limit a!Lp , we obtain a stress of the forms
5scurve1sorient1stens2cTd, in which

scurve.cTLpa (
n51

N21

^w~n!w~n!2ū~n!ū~n!uw~n!u2&

13cT(
n51

N21

^ū~n!ū~n!2 1
3 d &, ~5!

sorient53cT^ 1
2 u~1!u~1!1 1

2 u~N!u~N!2 1
3 d &, ~6!

stens.ca(
n51

N

^T~n!u~n!u~n!&. ~7!

The curvature stressscurve contains both purely mechanica
bending energy contributions~in the first line! and entropic
contributions~in the second line! arising from the orienta-
tional entropy of the links. It is easy to show, by evaluati
Eq. ~5! while assuming that Eq.~3! holds, that the total con
tribution to scurve from any bending joint exactly vanishe
when the curvature in that joint is locally equilibrated. T
orientational stresssorient is a residual contribution of the
link orientational entropy from the two end links, which ca
persist even when Eq.~3! holds for alln, as might occur in a
n

e
g
n-

-

-

solution of rodlike chains (L!Lp) if the undulation modes
were equilibrated but the distribution of chain orientatio
was not. This contribution is seen to reduce in this rodl
limit, in which u(1).u(N), to the known result@1# for the
elastic stress in a solution of rigid rods. The tension str
stens arises from the link tensionT(n).

Linear viscoelasticity is characterized by a dynam
modulusG(t) that describes the decay of the stress ten
s(t)5G(t)(de1de†) after an infinitesimal step strainde at
t50, or by the complex modulus Gtens* (v)
[ iv*0

`dt e2 ivtG(t)5G8(v)1 iG9(v). Both moduli may
be expressed as sumsG5Gcurve1Gorient1Gtens of moduli
describing the decay of different stress contributions. In w
follows, we switch to a continuous description of the chain
which w(s), u(s), andT(s) are treated as continuous fun
tions of a distances5an.

In tightly entangled solutions,scurve(t) and sorient(t)
can decay only via reptation, i.e., by diffusion of the cha
along its own contour, with a diffusivityDrep5T/(zL),
wherez is a friction coefficient per unit length@1,8–10#. The
semiflexible nature of the chain affects only the bound
conditions imposed at the ends of the tube@8–10#, where we
require the curvature to be locally equilibrated at all time
As a result of this boundary condition, segments of the tu
that have been created at times after a step deformationt
50 make no contribution toGcurve(t), exactly as in the DE
model @1#. We thus obtain a modulus

Gcurve~ t !5
7

5

rT

Le
x~ t/t rep!, ~8!

with the same time dependence as that of the DE mode
which x(t/t rep)[(n odd(8/p2)e2n2t/trep is a function with
an initial value x(0)51 and a longest decay timet rep
[L2/(p2Drep)}L3 of order the time required for the chai
to reptate a distanceL @1#. The initial value ofGcurve(0)
5 7

5 rT/Le , which is obtained from the curvature stress i
duced by an affine deformation of the tube@13#, is of orderT
times the number densityr/Le of links, i.e., of orderT per
entanglement. IfLe}r22/5, then Gcurve(0)}r7/5, as pro-
posed previously by Isambert and Maggs@12#.

The orientational stresssorient(t) also decays by repta
tion, with a decay time given by time required to randomi
the orientation of the chain ends. The initial valueGorient(0)
is of orderT per chain, and so is smaller thanGcurve(0) by
a factor ofLe /L. For L@Lp , Gorient(t) also exhibits a de-
cay timetend;Lp

2/Drep of order the time required to diffuse
a distanceLp , which is much smaller thant rep , and so
Gorient(t)!Gcurve(t) for all t. For rodlike chains, withLp
@L, reptation is instead known to lead@8–10# to a diffusion
of the end-to-end vector with a rotational diffusivityDrot

}Drep /(LLp), yielding a relaxation timeDrot
21 that is much

larger thant rep . In this limit, whereGorient(t) can dominate
G(t) for large t, we find

lim
L!Lp

Gorient~ t !.
3

5

rT

L
e2t/trod, ~9!

with t rod56LLp /Drep @9,10#.
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The tension stress can instead decay by diffusion of
cess length along the tube, as pointed out by Isambert
Maggs@12#. The contour length densityf(s,t) obeys a con-
servation equation]f/]t52](fn̄)/]s, where n̄(s,t) is a
tangential velocity of the polymer relative to the tube. T
tensionT (s,t) is related ton̄(s,t) by a force balancezn̄
5]T/]s, and to f by Eq. ~4!. Combining these relation
yields a diffusion equation

S ]

]t
2Df

]2

]s2D f~s,t !50, ~10!

with Df5B/z. The evolution ofdf(s,t)[f(s,t)2feq at
t.0 on a chain of known conformation~which may be taken
to be stationary, sinceDf@Drep) is given by

df~s,t !52feqE
0

L

ds8G~s,s8,t !de:u~s8!u~s8!, ~11!

whereG(s,s8,t) is the Greens function solution of Eq.~10!,
with G(s,s8,0)5d(s2s8) andG(s,s8,t)50 for s50,L, and
wherede :uu is the initial fractional extension of a segme
with orientationu under affine deformation. After averagin
Eq. ~7! for stens(t) over an equilibrium distribution of chain
conformations, using Eq.~4! for T(s,t), we obtain

Gtens~ t !5 1
15 rBc~ t !, ~12!

wherec(t) has an initial valuec(0)51, and

c~ t ![E
0

L

dsE
0

L

ds8G~s,s8,t !e23us2s8u/Lp. ~13!

To calculate c(t), we have used the fact tha

^Si j (s)Skl(s8)&5 1
15 e23us2s8u/Lp(d ikd j l 1d i l d jk2 2

3 d i j dkl) in
equilibrium, whereSi j (s)[ui(s)uj (s)2 1

3 d i j . For L!Lp ,
c(t) decays almost exponentially with a decay timetfL
5L2/(p2Df) given by the time required for excess length
diffuse to the chain ends. ForL@Lp , c(t).1 for t less than
the timetfp[Lp

2/(9Df) required for excess length to dif
fuse a distanceLp , decays asc(t)}t21/2 for tfp!t!tfL ,
and decays asc(t)}e2t/tfL for t@tfL .

The three moduliGcurve , Gorient , andGtens have widely
disparate magnitudes and relaxation times. The ten
modulus, with an initial valueGtens(0)}TLp

2/Le
3 and decay

timestfL and/ortfp , is both the largest and fastest decayi
contribution, and dominates the high-frequency behavio
G* (v). The curvature modulus is smaller, withGcurve(0)
}rT/Le , and more slowly decaying, and dominates lo
frequency behavior for chains withL*Lp , leading to a
broad elastic plateau in whichG8(v);rT/Le . The modulus
Gorient(t) is smaller still, and is significant only for rodlike
chains, for which it can lead to an additional entropic plate
with G8(v).rT/L at still lower frequencies.

The model described above is limited to relatively lo
frequencies by the assumption~implicit in the use of a
coarse-grained chain! that all undulation modes of wave
length less thanLe are equilibrated. To describe viscoelast
ity at higher frequencies, we will assume~and later confirm!
that G* (v) is dominated byGtens* (v) at very high frequen-
x-
nd

n

f

-

u

cies, due to the large free energy cost of tangential defor
tions. To extend our calculation ofGtens* (v), we generalize
Eq. ~4! by allowing for a frequency-dependent linear rel
tionship, of the form

T̂ ~s,v!5B̂~v!df̂~s,v!/feq , ~14!

between the temporal Fourier transforms~hereafter denoted
by carets! of df(s,t) andT (s,t). Given an expression fo
the frequency-dependent modulusB̂(v) ~which is calculated
below by considering the response of a confined chain to
oscillating applied tension! we may recalculateGtens* (v) by
repeating the arguments leading to Eq.~12!, again assuming

that relaxation off(s,t) is driven by gradients inT̂, to ob-
tain the generalization

Gtens* ~v!. 1
15 rB̂~v!c* ~v!, ~15!

where c* (v)[ iv*ds *ds8Ĝ(s,s8,v)e23us2su/Lp and
Ĝ(s,s8,v) is the Green’s function solution of the tran
formed diffusion equation@ iv2D̂f(v)(]2/]s2)#Ĝ(s,s8,v)
50, with D̂f(v)5B̂(v)/z.

To calculateB̂(v), we consider a Langevin equation fo
the normal displacementh(s,t) of a polymer from a straight
line representing the center of the tube, in the presence
time-dependent tensionT (t). The confinement to a tube ma
be approximated by adding a harmonic potentialUtube

5 1
2 TLpqe

4*dsuh(s)u2, with qe;1/Le , to the bending energy
Ubend5

1
2 TLp*dsu]2h(s)/]s2u2. After Fourier transforming

with respect tos, this yields a Langevin equation

z'

]h~q,t !

]t
52@K~q!1T ~ t !q2#h~q,t !1h~q,t ! ~16!

for the amplitudeh(q,t) of a mode of wave numberq,
whereK(q)[TLp(q41qe

4), z' is a friction coefficient, and
h(q,t) is a Langevin noise. The coarse-grained model fa
for all v*te

21 , wherete
21;TLpqe

4/z' is the relaxation rate
of a mode of wave numberqe .

By using Eq.~16! to calculate the linear response of th
density f.11 1

2 ^u]h(s)/]su2& to a sinusoidally oscillating
tensionT(t), we obtain the complianceB̂21(v). The calcu-
lation is straightforward@13#, and yields

B̂~v!5H E dq

2p

T

K~q!

q4

K~q!1~ i /2!z'vJ 21

. ~17!

For v!te
21 , Eq. ~17! yields the static modulusB̂(v)

}TLp
2qe

3 found in Ref.@11#. For v@te
21 , it yields

B̂~v!.23/4T1/4Lp
5/4~ ivz'!3/4. ~18!

Equation ~18! is equivalent to results obtained in Ref
@14,15# for the dynamics of contour length fluctuations of
semiflexible rod. At very highv, friction also becomes ef-
fective in suppressing slippage of the chain along the tu
which yields a relaxation functionc* (v).1. This, com-
bined with Eqs.~15! and ~18! yields
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G* ~v!.
23/4

15
rT1/4Lp

5/4~ ivz'!3/4. ~19!

Limiting form ~19! for G* (v), which has been obtaine
independently in Ref.@15#, depends only upon the dynam
response of a single unconfined chain, and so is expecte
give the generic high-frequency response of solutions
wormlike chains, at any concentration. The predicted f
quency dependence ofG* }( iv)3/4 is in excellent agreemen
with that reported in several recent microrheological stud
of F-actin solutions@5–7#.

The high-frequency behavior found above may be
plained qualitatively as follows: For a chain subjected to
tension oscillating with frequencyv@te

21 , only undulation
modes withq greater than a cutoffqc(v).(vz' /TLp)1/4,
with relaxation frequenciesK(q)/z'.v, are able to respond
adiabatically to variations inT(t), and to thus provide an
effectively equilibrated reservoir of excess length. To e
mate B̂(v), we thus assume that only these large-q modes
contribute to the complianceB̂21(v), and so replace the
cutoff wave numberqe;1/Le appearing in the static modu
lus B̂(0);TLp

2/Le
3 of Ref. @11# by the dynamic cutoff

qc(v), thus giving B̂(v);TLp
2qc

3(v), which agrees with
Eq. ~18!.

Using an analogous argument to estimate the hi
frequency behavior ofGcurve* (v), we may replace 1/Le by
qc(v) in Eq. ~12! to obtain Gcurve* (v);rTqc(v)}v1/4.
This estimate ofGcurve* (v) is much smaller thanGtens* (v) at
any v*te

21 , confirming that G* (v) is dominated by
Gtens* (v) at high frequencies.

Figure 2 shows numerical results forG* (v), calculated
using Eqs.~15! and ~17! for Gtens* (v), for a solution with
parameter values similar to those of a 1 mg/ml solution of
F-actin. The calculation reproduces the main features fo
in experiments on such solutions@3,4,7#, including a broad
curvature-dominated elastic plateau with a storage mod
s

o-
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G8;1210 dyne/cm2 @3,4,7#, and a high-frequency tension
dominated regime withG* (v)}( iv)3/4 @5–7#.

The above model should describe any sufficiently e
tangled isotropic solution of wormlike chains, and provide
starting point for understanding the viscoelasticity of su
solutions complementary to that of rigid-rod@1# and fuzzy-
cylinder@2# models. Equations~5!–~7! for the intramolecular
stress are actually applicable to any solution of worml
chains, and reduce in the appropriate limits to known res
for rodlike and flexible chains, and so may provide a use
starting point for describing the effects of semiflexibility
other concentration regimes. The above high-frequency l
iting form of G* (v), which is a result of tangential forces,
expected to be a generic feature of solutions of worml
chains.

Support of the Exxon Education Foundation and N
CTS9311795, and conversations with Freds Gittes
MacKintosh, are gratefully acknowledged.

FIG. 2. Calculated moduliG8(v) ~solid line! andG9(v) ~dot-
ted line! for L5Lp517 mm, Lm50.16mm, Le52.0 mm,

B̂(0)/T56900mm21, T5293 K, z'52z50.04 Poise. The
straight line has a slope of 3/4.
ett.
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