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Viscoelasticity of tightly entangled solutions of semiflexible polymers
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A molecular model is introduced to describe the linear viscoelasticity of tightly entangled solutions of
semiflexible polymers. An expression for the stress of a solution of wormlike chains is derived, and a tube
model is used to describe the effects of entanglement. Consideration of the Brownian dynamics of the polymer
within its tube yields a dynamic modul@* ()= (i w)¥* at high frequencies, in agreement with the results of
recent microrheology experiments on actin solutid®d.063-651X98)52008-9

PACS numbsgs): 83.20.Di, 83.50.Gd, 87.45.Ft

Current understanding of the viscoelasticity of polymerfreely. Simple scaling argumen{d0] yield length scales
solutions is based to a large extent upon models that amqxL,(pL3) ¥ andLexL (pL3) 2.
designed to describe either completely flexifBaussianor To describe this regime we use the tube model, which is
completely rigid-rod polymer§l]. There exists, however, a analogous to the Doi-Edward®E) model[1], in which (i)
large class of semiflexible polymers, which typically form each polymer is confined to a weakly-curved tuti, tan-
lyotropic liquid-crystalline phases at high enough concentragential motion of the polymer relative to the tube is resisted
tions[2], for which there exists no equally detailed molecu-only by viscous forces, an(ii ) the tube deforms affinely. To
lar model of viscoelasticity. Among these are biopolymers describe low-frequency viscoelasticity, we introduce a
such as DNAF-actin, and fibrin, as well as synthetic liquid- coarse-grainedor “primitive” ) chain. Because only undu-
crystalline polymers such as Kevlar. For lack of a moleculanation modes of wavelengths greater tHanare constrained
model of partially flexible chains, experiments on both iso-by entanglement, we may represent the coarse-grained chain
tropic and nematic solutions of such polymers are often comas a chain oN=L/L, discrete links andN+ 1 beads, where
pared to models of rigid rods. The present paper provides gach link represents a subchain of lengthwith a preferred
framework for the calculation of the various sources of elasend-to-end length that is slightly less thah,. This coarse-
tic stress in solutions of semi-flexible polymers genel’a”y,grained chain is assigned a bending energy
and, motivated in part by recent experiments on actin solu-
tions[3—7], presents a model of linear viscoelasticity in the
tightly entangled regimd8—13 relevant to these experi- Upend=3TLpa 2, [w(n)|?, (2
ments. =t

In what follows, we consider a solution af wormlike
chains per unit volume, each of contour lengthgiving a
densityp=cL of contour length per unit volume and a mesh
size L,,=p 2. The conformation of a single polymer is
specified by a continuous contoufs), wheres is the con-
tour distance from one chain end, and by corresponding tan-
gent and curvature vectorsi(s)=dr(s)/ds and w(s)
=gu(s)/ds. The chains are assumed to be inextensible, so
that |u(s)|=1 andw(s)-u(s)=0, and to have a bending
energy

N—-1

wherew(n)=[u(n+1)—u(n)]/a andu(n) is a unit vector
parallel to linkn. We will describe a bending joint of the

L
Ubend:%TLpfO dS|W(S)|21 D

whereT is the temperature in units of energy aiglis the
persistence length.

We consider, more specifically, a “tightly-entangled” so-
lution in whichL <L, and in which each polymer is con-
fined to a tube of diametdd <L, as sketched in Fig. 1. In
this regime, there exists a tangential correlation lerigth \(

De

7

«DZ™}"®, of order the distance between collisions of the
polymer with the walls of the tub&8—10], such that only
undulation modes of wavelength less tHapn can fluctuate FIG. 1. Tube model for an entangled wormlike chain.
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primitive chain as being “locally equilibrated” if the condi-
tional average of the tensar(n)w(n), averaged over chains
with a specified orientatioru for the vectoru(n)=[u(n
+1)+u(n)]/2, takes on the value

! o
L_pa( uu),

(w(n)w(n) 8(u(n)—u)) _
(8(u(n)—u))

obtained by applying the equipartition theorem to jgincbf
Upend, While constrainingv(n) to be perpendicular ta(n).

)

The links of this coarse-grained chain must also be take

to be slightly extensible, since the end-to-end distag@®e

of a link may be changed slightly by changing the magnitud
of transverse undulations of the polymer, without changin
the true chain length. To describe this, we introduce a dime
sionless densityp(n)=L./q(n) of contour length per unit
length of the primitive chain, with a thermal equilibrium
value of ¢.q=Lc/a. To calculate linear response, we may
assume a linear relationship

T(n)z_B[¢(n)_¢eq]/¢eq (4)

between the tensiof{n) and contour length density(n) in
each link. The elastic moduluB has been calculated by
MacKintosh, Janmey, and Kd41], who obtained a value

B TL3/L3 by considering the effect of an applied static ten-

sion upon the undulations of a confined polymer.

A general expression for the intramolecular polymeric
contribution to the stress of a solution of discretized worm-

like chains may be obtainefd] by evaluating the sunor
=czN*Xr(n)f(n)), wherer(n) is the position of bead of
a randomly chosen chaifitn)=d[U+T In(W)]/ar(n) is the
force on beach, U({r}) is the intramolecular potential en-
ergy, and¥ ({r}) is a single-chain probability distribution.
After a straightforward calculatiofL3], and after taking the
wormlike limit a<L,, we obtain a stress of the forrr

= OcurpeT Forient™ Otens— C T, in which

N—1
Feurne=CTLpa 2 (w(n)w(n) —u(nu(n)w(n)|?)

N—-1
+3cT2 (u(nu(n)—34), (5
Torient=3CT(2U(L)U(L)+ 2u(N)u(N)-16),  (6)
N
«rtens:can; (Tin)u(n)u(n)). 7

The curvature stresa, . contains both purely mechanical
bending energy contribution@n the first lin@ and entropic
contributions(in the second lingarising from the orienta-
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solution of rodlike chainsl(<L,) if the undulation modes
were equilibrated but the distribution of chain orientations
was not. This contribution is seen to reduce in this rodlike
limit, in which u(1)=u(N), to the known resulf1] for the
elastic stress in a solution of rigid rods. The tension stress
Oiens arises from the link tensiofi(n).

Linear viscoelasticity is characterized by a dynamic
modulusG(t) that describes the decay of the stress tensor
o(t)=G(t)(de+ e after an infinitesimal step straifie at
t=0, or by the complex modulus G}, {w)
=iwf5dt e "“'G(t)=G'(w)+iG"(w). Both moduli may

Be expressed as sur®s= G ,et Gorient™ Gtens Of moduli

describing the decay of different stress contributions. In what

e‘follows, we switch to a continuous description of the chain in
Q‘{vhich w(s), u(s), andZ(s) are treated as continuous func-
"fions of a distance=an.

In tightly entangled solutionsg,e(t) and oy ient(t)
can decay only via reptation, i.e., by diffusion of the chain
along its own contour, with a diffusivityD,.,=T/({L),
where( is a friction coefficient per unit lengtfi,8—10. The
semiflexible nature of the chain affects only the boundary
conditions imposed at the ends of the t{iBe 10|, where we
require the curvature to be locally equilibrated at all times.
As a result of this boundary condition, segments of the tube
that have been created at times after a step deformatibn at
=0 make no contribution t&,(t), exactly as in the DE
model[1]. We thus obtain a modulus

_7pT
Geurvelt) = 5L X(t/Trep)! (8)
e

with the same time dependence as that of the DE model, in
which x(t/7ep) =2, 0d0(8/772)e_n2t/7fep is a function with

an initial value y(0)=1 and a longest decay time.,
=L2/(m*Dyep)L> of order the time required for the chain
to reptate a distanck [1]. The initial value ofG¢,,,e(0)
=IpT/L., which is obtained from the curvature stress in-
duced by an affine deformation of the tyls3], is of orderT
times the number density/L, of links, i.e., of orderT per
entanglement. IfL,xcp~ 25, then Gg,,e(0)xp™®, as pro-
posed previously by Isambert and Madg£].

The orientational strese,ien(t) also decays by repta-
tion, with a decay time given by time required to randomize
the orientation of the chain ends. The initial val@g,c,«(0)
is of orderT per chain, and so is smaller th&y,,,(0) by
a factor ofLc/L. ForL>L, Ggiendt) also exhibits a de-
cay timerg,q~ LS/Drep of order the time required to diffuse
a distanceL,, which is much smaller tham.,, and so
Gorient(t) <Gcume(t) for all t. For rodlike chains, with
>L, reptation is instead known to led8-1Q] to a diffusion
of the end-to-end vector with a rotational diffusiviiy, .
xD,ep/(LL,), yielding a relaxation time,; that is much
larger thanr,e,. In this limit, whereG,jcn(t) can dominate

tional entropy of the links. It is easy to show, by evaluatingG(t) for larget, we find

Eq. (5) while assuming that Ed3) holds, that the total con-
tribution to o,e from any bending joint exactly vanishes

when the curvature in that joint is locally equilibrated. The

orientational stressr,,ien: IS @ residual contribution of the
link orientational entropy from the two end links, which can
persist even when E§3) holds for alln, as might occur in a

3pT

lim Gorient(t): g Teit/TrOdl

L<Lp

(©)

With 7,54=6LL,/Dyep [9,10].
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The tension stress can instead decay by diffusion of exeies, due to the large free energy cost of tangential deforma-
cess length along the tube, as pointed out by Isambert artibns. To extend our calculation @&7,,{ ), we generalize
Maggs[12]. The contour length densitg(s,t) obeys a con- Eq. (4) by allowing for a frequency-dependent linear rela-
servation equatiom¢/dt=—d(pv)/ds, wherev(s,t) is a  tionship, of the form
tangential velocity of the polymer relative to the tube. The

tension7(s,t) is related tor(s,t) by a force balance v 7(5,0)=B(w) 5$(s,0)/ deq, (14)
=971ds, and to ¢ by Eq. (4). Combining these relations
yields a diffusion equation between the temporal Fourier transforfhereafter denoted

by caret$ of §¢(s,t) and7(s,t). Given an expression for
the frequency-dependent modulBéw) (which is calculated

a Dd)g) ¢(s,1)=0, 10 pelow by considering the response of a confined chain to an
oscillating applied tensionve may recalculat&, ,{ ) by

with D,=B/{. The evolution ofé¢(s,t)=¢(s,t)— e, at  repeating the arguments leading to Ep), again assuming

t>0 on a chain of known conformatigwhich may be taken that relaxation ofg(s,t) is driven by gradients ir¥, to ob-

to be stationary, sincB 4,>D,) is given by tain the generalization

az

5¢(s,t)=—¢eqf0Lds’G(s,s',t)5e:u(s')u(s'), (11) Grend @) =75pB(0) Y* (w), (15

where ¢* (w)=iw[ds [ds'G(s,s',w)e 35" s'p  and
with G(s,s’,0)= 8(s—s') andG(s,s’,t)=0 for s=0,L, and G(s,s’,w) is the Green’s function solution of the trans-

o O A 2/ 962\7 A ,
where ée :uu is the initial fractional extension of a segment formeq diffusion equatiofii o —D 4(w)(9°/s7) JG(s,s", w)
with orientationu under affine deformation. After averaging =0, With D 4(w) =B(w)/{.
Eq. (7) for o.n{t) over an equilibrium distribution of chain To calculateB(w), we consider a Langevin equation for

whereG(s,s’,t) is the Greens function solution of EQLO),

conformations, using Ed4) for 7(s,t), we obtain the normal displacemeihi(s,t) of a polymer from a straight
L line representing the center of the tube, in the presence of a
Giendt)=15pBij(1), (12 time-dependent tensidf(t). The confinement to a tube may

be approximated by adding a harmonic potenti&},,.

= %TLp?‘e‘fds|h(s)|2, with ge~1/Le, to the bending energy
L (L , Upend= 2 TLpS ds|d?h(s)/ds?|?. After Fourier transforming

dz(t)zf dsf ds'G(s,s',t)e 3s7s'llbp . (13)  with respect ts, this yields a Langevin equation
0 0

where (t) has an initial valugy(0)=1, and

ah(q,t)
ot

To calculate (t), we have used the fact that L
<$j(5)&|(5’)>:%973‘373 IIL"(5ik5j|+5i|5jk_%5ij dy) in
equilibrium, whereS;;(s)=u;(s)uj(s)—36;;. For L<L,,
#(t) decays almost exponentially with a decay timg
=L?/(m?D ) given by the time required for excess length to
diffuse to the chain ends. Fa>L,, ¢(t)=1 fort less than
. 2 - -

the time 74,=L/(9D ) required for excess length to dif of a mode of wave numba, .

H -1/2 ‘t< . .
fuse a distance, de,ctiyf Ag(t) ot TR HOr 7yp<t<7y1 By using Eq.(16) to calculate the linear response of the
and decays ag(t)<e "7t for t>7 . density =1+ 1(|ah(s)/as|?) to a sinusoidally oscillating

The three modulG. e, Gorient: @NdGiens have widely . . s
disparate magnitudes and relaxation times. The tensiober.ls'onﬂt)’ we obtain the comphancB (w). The calcu-
ation is straightforward13], and yields

modulus, with an initial valuge,40)TL5/L3 and decay

=—[K(a)+7(H)g?Ih(q,t) + n(q,t) (16)

for the amplitudeh(q,t) of a mode of wave numbeq,
whereK(q)ETLp(q“Jr qg), £, is a friction coefficient, and
7(q,t) is a Langevin noise. The coarse-grained model fails
for all =7, *, wherer, '~ TL,q¥/{, is the relaxation rate

timesr,_and/orr,,, is both the largest and fastest decaying A dg T q* -1
contribution, and dominates the high-frequency behavior of B(w):[j — - a7
G*(w). The curvature modulus is smaller, wiy,,.(0) 27 K(q) K(q)+(i/2){, @

xpT/Ly, and more slowly decaying, and dominates low- . _ ) .
frequency behavior for chains with=L,, leading to a For @<7.”, Eq. (17) yields the static modulus(w)
broad elastic plateau in whid®’ (w)~pT/L,. The modulus = TL3a3 found in Ref.[11]. For o> 7", it yields
Gorient(t) is smaller still, and is significant only for rodlike

chains, for which it can lead to an additional entropic plateau B(w)=2%TV 4 (iw(, )¥ (18
with G’ (w)=pT/L at still lower frequencies.

The model described above is limited to relatively low Equation (18) is equivalent to results obtained in Refs.
frequencies by the assumptidimplicit in the use of a [14,15 for the dynamics of contour length fluctuations of a
coarse-grained chairthat all undulation modes of wave- semiflexible rod. At very highw, friction also becomes ef-
length less thah . are equilibrated. To describe viscoelastic- fective in suppressing slippage of the chain along the tube,
ity at higher frequencies, we will assuntend later confirm  which yields a relaxation functiony* (w)=1. This, com-
that G* () is dominated byG;;,{ ) at very high frequen- bined with Eqs.(15) and(18) yields
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G* (@)= Tz pT L3 i wg, ) (19) 5 10°}
15 P @
S 10'f
Limiting form (19 for G* (w), which has been obtained = 10° b
independently in Ref(15], depends only upon the dynamic =12k
response of a single unconfined chain, and so is expected to *§/ .
give the generic high-frequency response of solutions of (5 0 [
wormlike chains, at any concentration. The predicted fre- 10°f
quency dependence &* « (i w)¥*is in excellent agreement 10'f
with that reported in several recent microrheological studies 102}
of F-actin solutiong5-7]. A A
The high-frequency behavior found above may be ex- 10%10°10% 102102107 10° 10" 10% 10% 10* 10° 10°
plained qualitatively as follows: For a chain subjected to a ® [rad/s]
tension oscillating with frequency > Tgl, only undulation
modes withq greater than a cutoffie(w)=(w, /TLy)Y* FIG. 2. Calculated modul’(w) (solid line) and G"(w) (dot-

with relaxation frequenciei§(q)/{, > w, are able torespond ted ling for L=L,=17 um, L,=0.16um, L=2.0um,
adiabatically to variations irZ(t), and to thus provide an B(0)/T=6900um™!, T=293K, ¢, =2(=0.04 Poise. The
effectively equilibrated reservoir of excess length. To esti-straight line has a slope of 3/4.

mate_B(w), we thus ass.ument?flt only these latgerodes G’ ~1-10 dynelcrf [3,4,7), and a high-frequency tension-
contribute to the compliancB™“(w), and so replace the yominated regime witls* ()« (i )34 [5-7].
cutoff wave numbeq.~1/L. appearing in the static modu-  The above model should describe any sufficiently en-

lus B(O)~TL§/L2 of Ref. [11] by the dynamic cutoff tangled isotropic solution of wormlike chains, and provides a

qc.(w), thus giving B(w)~TLSq§(w), which agrees with starting point for understanding the viscoelasticity of such

Eq. (18). solutions complementary to that of rigid-r¢dl] and fuzzy-
Using an analogous argument to estimate the highcylinder[2] models. Equationéb)—(7) for the intramolecular
frequency behavior 06%,,,.(w), we may replace 1, by  Stress are actually applicable to any solution of wormlike
9o(w) in Eq. (12) to obtain qume(w)NPch(w)mwlm_ chalns,_and reduce_ in the appropriate limits to kr_10wn results
This estimate 06}, .(w) is much smaller tha®;;,{ ) at for rodlike and flexible chains, and so may provide a useful

any w=1 1 cofﬂlﬁrre}]ing that G* () is dominated by starting point for describing the effects of semiflexibility in
Gho () ::t r;igh frequencies _o_ther concentration regimes. The above hlgh—f_requency I_|m—
telgigure 2 Shows numericai results f&r* (w), calculated iting form of G* (w), Whlc_h is a result of tangentlal forces, is
using Eqs.(15) and (17) for G%_{w), for a s;)Iution with g;}(g%c;ed to be a generic feature of solutions of wormlike
parameter values similar to thosé @ 1 mg/ml solution of ne-
F-actin. The calculation reproduces the main features found Support of the Exxon Education Foundation and NSF
in experiments on such solutiofi8,4,7], including a broad CTS9311795, and conversations with Freds Gittes and
curvature-dominated elastic plateau with a storage moduluslacKintosh, are gratefully acknowledged.
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